Exceptional service in the national interest

energy.sandia.gov

Energy Storage Demonstration and Analysis:

ESS in Grid-Level Setting

Benjamin Schenkman

Singapore
August 2015

ES Grid-Level Projects

Mission: Advance energy storage systems and evaluate cost effectiveness, performance, safety and reliability.

EXAMPLES

- Feasibility Study
 - Cordova, Alaska
- Factory Acceptance Testing, Commissioning and Analysis
 - Puget Sound Energy
- Application and Optimization
 - Base Camp Integration Laboratory
 Limited Discussion of system.

Cordova Hydroelectric/Energy Storage Feasibility Study

- Cordova Electric Cooperative (CEC)
- US DOE/OE and Sandia National Labs (SNL)
- Alaska Center for Energy and Power (ACEP)

Issue

- Expansion of fishing industry has exceeded the supply capability of the 8.5MW hydroelectric plants which supplemental power demand is met with diesel generation.
- Supplemental power by diesel generation is only needed for minutes
- Hydro units are run with a 500kW reserve which energy storage can free up and defer diesel generation
- ACEP with SNL and has developed an energy balance model to determine feasibility of an energy storage system installed on the Cordova system

Cordova Electrical System Overview

- Member-owned COOP serving 2,000
 customers with summer load peak of 8.4 MW
- Generation Assets
 - Pump Creek: 2 hydro units, 3 MW each
 - Humpback Creek: 2 hydro units, 1.25 MW each
 - Orca Power Plant: 5 diesel units, Total of 9.8 MW
- Distribution system is underground
- SCADA system records over 200 channels of systems data at 1 second intervals with over 10 years worth of data

Results of Energy Balance Model

- Total hours per year within 500kW of spinning reserve while running on hydro power was 215.9167 hours
- Total displaceable diesel hours is 185.4589 hours
- Assuming electricity cost of \$0.45/kWh, economic value of energy storage systems is ~\$54,640/year
- Power class energy storage system will not have significant economic benefit for Cordova used for diesel displacement

Summary/Conclusions

- Recovering water spilled during times when load demand is below the hydropower capacity has a beneficial impact
- Initial economic benefit of \$750,000/year off-setting thermal loads
- (~14x better return)

Future Tasks

- Establish New Energy Balance
 Model for Capturing Water Spilled
 - Distributed thermal storage units
 - Electrochemical energy storage
- Develop Dynamic Model for Energy Storage Based On Energy Balance Model
 - Size Specifications
 - Control of single or multiple devices
- Use developed process and model for replication which will be coordinated through a partnership with DOE Indian Affairs

Puget Sound Energy Flow Battery **Energy Storage System**

Players

- Puget Sound Energy (PSE)
- Bonneville Power Administration (BPA)
- **Primus Power**
- DOE/OE and Sandia National Labs (SNL)
- Pacific Northwest National Laboratory (PNNL)

Project Objectives

- Install and analyze an innovative 0.5 MW / 1.0 MWh Zinc Bromide flow battery system from Primus Power
- Develop best practices for commissioning an energy storage system
- Assess (and demonstrate) the benefits of energy storage on the distribution grid

Current Status of Project and Future Effort

Currently

- Developing Factory Acceptance Test (FAT) document
 PSE to serve as the lead entity
- Incorporating Sandia's lesson learned document for commissioning

Future

- Develop commissioning tests, including
 - Field or Operation Acceptance Test
 - Functional Acceptance Test
- Complete Performance Evaluation
 - Team will monitor installed energy storage system for a period of time to evaluate performance for peak shaving, renewable integration and uninterruptible power supply based on PNNL performance metrics document
 - Change/ modifyapplication of energy storage system based on performance evaluation

Energy Storage Incorporated into a Forward Operating Base (FOB)

Players

- Army Program Manager Force Sustainment Systems (PM FSS)
- GS Battery
- Raytheon/Ktech
- MilSpray
- Princeton Power Systems
- US DOE/OE and Sandia National Labs (SNL)

Project Objectives

 Analyze energy storage's capability to increase the reliability of the electrical power microgrid at a FOB while decreasing the fossil fuel consumption of the system

FY14 Accomplishments at Energy Storage Test Pad (ESTP)

U.S. DEPARTMENT OF ENERGY

- RFI issued based on Army Regulations and Sandia Applications
 - Milspray, Lead Acid
 - Princeton Power, Li-Ion
 - Raytheon/Ktech, Zinc Bromide
 - GS Battery, Lead Acid
- Completed Operation
 Analysis at Sandia's ESTP
 - Published SAND reports of testing results

Raytheon Ktech

 Developed predictive fuel savings model

Accomplishments at BCIL

- Completed first round of functional analysis at Base Camp Integration Laboratory (BCIL)
 - Princeton Power and GS Battery energy storage system completed
 - Princeton Power sent ESS to MIT Lincoln Labs (MIT/LL) for further evaluation

Current Project Status and Future Efforts

GS Battery Rendering of RESCU unit with PV

Currently

 GS Battery HES RESCU unit is being engineered to be hardened to increase capability for grid forming

Future

- Analyze GS Battery HES RESCU unit at BCIL with new grid forming capability
- Combine energy storage system with renewable energy and evaluate
- Scale up existing energy storage systems for larger base camps

Thank you!

Questions?

Benjamin Schenkman blschen@sandia.gov

Reference: SAND2014-17528 PE 14

Additional ES Demo Contact Information

- Dan Borneo
 - drborne@sandia.gov
- Thomas Merrill
 - Thomas.a.merrill8.civ@mail.mil
- Laura Feinstein
 - Laura.feinstein@pse.com
- Andrew Marshall
 - Andrew.marshall@primuspower.com
- Vilayanur Viswanathan
 - Vilayanur.viswanathan@pnnl.com
- Abbas Akhil
 - abbas@revtx.com
- Marc Mueller-Stoffels
 - mmuellerstoffels@alaska.edu

